
Powder Technology 310 (2017) 175–186

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r .com/ locate /powtec

Particle shape effects on fabric of granular random packing

Shiwei Zhaoa, b, Nan Zhangb, Xiaowen Zhoua, c, *, Lei Zhangb

aSchool of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
bSchool of Civil and Construction Engineering, Oregon State University, Corvallis 97333, USA
cPowerchina Huadong Engineering Corporation Limited, Hangzhou 310014, China

A R T I C L E I N F O

Article history:
Received 2 October 2016
Received in revised form 28 December 2016
Accepted 31 December 2016
Available online 4 January 2017

Keywords:
Discrete element method
Random packing
Superellipsoids
Fabric
Particle shape
Anisotropy

A B S T R A C T

A numerical investigation of particle shape effects on fabric of granular packing is carried out using the three
dimensional discrete element method with a superellipsoid model. A broad range of particle shapes con-
trolled by two shape parameters (i.e., aspect ratio and blockiness) are taken into account. A series of random
packing of non-cohesive, frictional monodisperse superellipsoids is conducted under gravitational forces in
simulations. Fabric of a granular packing is quantified in terms of packing density, coordination number,
distribution of particle orientations, anisotropy of three types of fabric vectors (i.e., particle orientation, con-
tact normal and branch vector), and distribution of normalized contact forces. It is shown that the effects of
particle shape on packing density and mean coordination number are in agreement with the reported in the
literature. Moreover, ellipsoids show the lowest packing density in the family of superellipsoids. The dis-
tribution of particle orientations is much more sensitive to blockiness than aspect ratio. It is also found out
that anisotropy of both particle orientations and contact normals shows a similar M-type relationship with
aspect ratio, two times larger than that of branch vectors. Interestingly, particle shape has an insignificant
effect on the probability distribution of normalized contact forces which shows a clear exponential distri-
bution. Those findings would be useful for a better understanding of the initial fabric of granular packing,
especially in granular mechanics and geomechanics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Random packing of granular materials is ubiquitous in nature and
industry. Their interesting structural properties have been the focus
of a considerable body of research [1–4]. In laboratory, some basic
shapes, e.g., spheres [5–7], ellipsoids [8] and regular convex poly-
hedra [4,9], have been used to investigate packing properties. How-
ever, such experiments are extremely laborious and even expensive.
Moreover, it is not straightforward to obtain the microscopic infor-
mation of a packing for a better understanding. Therefore, many
researchers prefer to conduct numerical simulations instead. There
are several available numerical methods, e.g., the discrete element
method (DEM) [10], Monte Carlo simulations [11], the Lubachevsky-
Stillinger algorithm [12] and molecular dynamics [13]. To the best
of our knowledge, DEM is the most popular due to its power of
simulating physical process in real life. The reader is referred to the
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literature [14] for a good review of DEM applications on granular
systems.

Particle shape has a significant effect on a packing structure
[9,15–17]. Packing of non-spherical particles has considerably differ-
ent properties from that of spherical particles [18]. In recent years,
extensive numerical investigations on packing of non-spherical par-
ticles were carried out. For example, Lu et al. [19] and Kyrylyuk
and Philipse [16] investigated the relationship between packing den-
sity and aspect ratio using spherocylinders. Deng and Davé [20]
used the multi-sphere method to investigate the effect of the par-
ticle size, aspect ratio on the packing of spherocylinders. Nan et
al. [21] investigated random packing of rigid fibers with variable
aspect ratio and curvature using a multi-sphere model. Li et al. [18]
reported the maximum random packing densities of basic three-
dimensional shapes using sphere assembly models. Zhou et al. [22]
simulated the random packing of ellipsoidal particles, and reported
that the maximum packing density occurs at an aspect ratio of 0.6
for oblate spheroids, and 1.8 for prolate spheroids, qualitatively in
agreement with the results of Donev et al. [8]. Following Zhou et
al. [22], Gan et al. [23] conducted packing simulations of ellipsoids
by considering the presence of the van der Waals force between fine
particles. For polyhedral shapes, Jiao and Torquato [24] investigated
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the effect of particle shape on packing density using the adaptive-
shrinking-cell method [25]. In particular, the regular tetrahedron has
the lower bound [26] and upper bound [4] of packing density among
convex polyhedra; it also has the upper bound of packing density
in the family of tetrahedra [27,28]. Most of the literature mentioned
above focused on the two packing descriptors, i.e., packing density
and coordination number. However, these two descriptors are not
sufficient to give a deeper insight into fabric of a granular packing.

Fabric of a granular packing (or assembly) is the arrangement
of the particles, i.e., the topology of the internal structure of the
packing [29], which has considerable effects on the macroscopic
properties of the packing [30–32]. Especially in granular mechan-
ics and geomechanics, previous investigations show that the initial
fabric of a granular material has a significant effect on the mechanical
behaviors [30,31,33,34]. For quantitative studies, fabric can be quan-
tified using several measures, e.g., packing density, the coordination
number, the distribution of particle orientations, the distribution
of contact normals, and the distribution of branch vectors [29].
In addition, local voids around individual particles are attractive
as well. Oda [35] first quantified the local porosity distribution
for sands in 2D by connecting the mass centers of particles sur-
rounding a void to define a polygonal cell. A better alternative of
Oda’s method is the Voronoi tessellation (i.e., the so-called Voronoi
analysis), which is able to more precisely characterize the local void.
This method has been widely applied to sphere packings, e.g. [36],
including an extension, radical Voronoi (i.e., Laguerre) tessellation,
for granocentric models [37,38], whereas just a few for non-spherical
particles [39–42] due to the complication of construction of Voronoi
cells. To date, few investigations on the fabric of random packing of
granular materials were reported. In this work, we focus on the initial
fabric of a granular packing, i.e., the fabric after packing.

Superellipsoids are able to capture many of the essential features
of real particle shapes [43] and represent a wide range of shapes in
nature [44]. Superellipsoids-based DEM has been applied to simulat-
ing granular flows in industry [45]. In this work, a DEM model based
on superellipsoids is developed and embedded into the open-source
DEM code, YADE [46,47]. Using the present model, we conduct a
series of random packing of superellipsoids with a broad range
of particle shapes under a gravitational field, analogous to the
formation of a sand pile in nature. Effects of particle shape on packing
density and coordination number are investigated first, followed
by probability distributions of particle orientations. For a further
understanding of fabric, anisotropy of fabric vectors and probability
distributions of normalized contact forces are analyzed.

2. Discrete element model

2.1. Superellipsoids

The surface function of a superellipsoid in the local Cartesian
coordinates can be defined as [48]
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where a, b and c are referred to be the semi-major axis lengths in
the direction of x, y, and z axes, respectively, and 4i, (i = 1, 2) are the
shape parameters determining the sharpness of particle edges. The
interested reader is referred to [43,44] for other similar definitions of
a superellipsoid. The present work focuses on convex shapes whose
corresponding 4i is in (0, 2). Changing 4i gives a wide ranges of shapes
(see Fig. 1). In particular, 4i → 0 gives a cubic shape, while 4i →
2 corresponds to an octahedral shape. Appendix A gives a series of
important geometric properties of a superellipsoid involved in the
present model.

Fig. 1. Superellipsoids with a = 2, b = 1, c = 3 and (a) 41 = 42 = 0.2, (b) 41 = 42 =
1.0, and (c) 41 = 0.2, 42 = 1.8.

2.2. Equations of motion

Particle motion can be decomposed into two parts: translation
and rotation. The translation of a particle is governed by Newton’s
equations:

m
dvi

dt
= Fi (2)

where i ∈ 1, 2, 3 is the global coordination axis; m is the mass, given
by Eq. (A.1); vi is the translational velocity, and Fi is the resultant
force acting on the centroid.

Meanwhile, Euler’s equations are applied for particle rotation:

Ii
dyi

dt
− (Ij − Ik)yjyk = Mi (3)

where i ∈ 1, 2, 3 is the principal axis and i, j, k are subsequent indexes;
Ii is the principal moment of inertia, given by Eq. (A.3); yi is the
angular velocity, and Mi is the resultant torque around the centroid.

Newton’s and Euler’s equations are solved, respectively, using the
standard and the extending leapfrog algorithm [49]. Following gen-
eral DEM codes, artificial numerical damping is used to dissipate
kinetic energy in the system. Thus, a corresponding damping force
f(d) is added to the right-hand of Eqs. (2) and (3), given as [47]

f (d)
i = −aFiSign
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(
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, i ∈ {1, 2, 3} (4)

where a is the damping coefficient; Dt is the time step, v(t−Dt/2)
i

the previous mid-step velocity,
dvt

i
dt the current on-step acceleration,

Sign (x) the signum function (see Eq. (A.6)).

2.3. Contact force law

The present DEM is based on the soft particle method [10], where
particles are allowed to overlap, referring to Fig. 2. As a consequence,
repulsive force can be calculated from the overlap in terms of a given
model. There are a wide range of available models. However, for sim-
plicity, a common linear spring model [50] is used in this work, given
as follows.

{
Fn = dKn

Ft = min
{
F ′

t + DuKt , lFn
} (5)
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Fig. 2. Three-dimensional illustration of two touching particles. The size of the
overlap region is exaggerated for clarity.

where Fn and Ft are the normal and tangential contact forces,
respectively; Kn and Kt are their corresponding normal and tangen-
tial contact stiffness; Du is the contact incremental displacement at
each time step while d is the penetration depth of entities at contact;
l is friction coefficient; F ′

t is the tangential contact force at the pre-
vious time step. Note that the Coulomb condition (or sliding friction
model) is applied to tangential contact force. The tangential contact
force F ′

t is initialized to zero when the contact is formed. The contact
stiffness K* (* representing n or t) is set to the harmonic mean of the
stiffness of the two entities at contact, given by Eq. (6), where the
subscripts A and B denote the two particles in contact.

K∗ =
2KA

∗ KB
∗

KA∗ + KB∗
(6)

2.4. Geometric quantities at contact

The penetration depth and the contact direction are updated
for the calculation of contact forces at each time step. Given two
adjacent particles A and B, the potential contact points, denoted as
pA and pB from each particle, yield a potential contact penetration
d = (pB − pA), referring to Fig. 3 (a). Based on the common-normal
concept [51,52], the desired contact points make the penetration
depth minimum and subjected to the following conditions:

(1) the unit vectors, nA and nB, of the outward surface normals
at pA and pB are parallel and anti-parallel to the contact
direction c, respectively:

nA = −nB = c (7)

(2) the potential contact penetration d is parallel to the contact
direction c:

d × c = 0 (8)

Therefore, finding the contact points is an optimization problem.
As suggested by Wellmann et al. [52], the contact direction c is
parameterized by two angles in a local spherical coordinate system,
i.e.,

c(a,b) = cosa cosbi + sina cosbj + sinbk (9)

where i, j, and k are unit base vectors of the global Cartesian coor-
dinate system. Consequently, considering Eq. (7), the contact points
are expressed as

{
pA = T−1

A FA(f A(TAc(a,b))) + sA

pB = T−1
B FB(f B(−TBc(a,b))) + sB

(10)

where T is the rotation matrix of a particle from the global coordinate
system to the local, and T−1 is its inverse; s is the position vector of
a particle; f and F are two geometric functions at the local of a parti-
cle (see Eqs. (A.5) and (A.7)). Therefore, finding the penetration depth
∥d ∥ becomes the following unconstrained optimization problem
with two parameters:

min
a,b

∥ d ∥= min
a,b

∥ pB − pA ∥ (11)

The Nelder-Mead simplex algorithm [53] is adopted to obtain a
robust solution. It is worth noting that Eq. (8) is fulfilled when Eq.
(11) reaches a global minimum [52].

Fig. 3. Two-dimensional schematic of the optimization solving between two (a) touching and (b) non-touching particles.
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2.5. Contact detection

Given that so many particles need collision detection at each time
step, a combination of approximate collision detection and exact
detection is applied to reducing the computational cost. A two-level
approximate collision detection scheme is provided. At the first level,
the AABB (axis-aligned bounding box) algorithm [54] is used to rule
out most of the particles that are not touching one another. For the
special case of superellipsoids, we use a fixed-size cubic AABB for
each particle. Then, spherical bounding boxes are used for a further
sweep at the second level. For the rest particles potentially in contact,
the exact detection is undertaken, which is introduced in Section 2.4.
During the optimization solving, it is useful to check the following
condition at each iteration.

d • c > 0 (12)

If this condition is true, particles are not touching [52], referring
to Fig. 3 (b). Therefore, we can rule out the current particle pair and
terminate the detection.

3. Simulation setup

3.1. Particle shapes and properties

The present DEM model is able to model shapes with the whole
range of superellipsoids determined by five shape-related parame-
ters (i.e., a, b, c, 41 and 42) as shown in Eq. (1). However, studying the
whole range of shapes is a huge work and needs significantly high
computational cost. We, thus, focus on the cases with a = b = gc
and 41 = 42 = f , where g is aspect ratio, and f is referred to as
blockiness [55,56]. Fig. 4 shows some shapes used in the simulations.

Particle properties used in the simulations are given in Table 1.
Particle size r is the radius of a sphere with equivalent volume. The
particle density q and the inter-particle sliding friction coefficient l
correspond to that of natural sand measured in laboratory [57]. Walls
of the container are frictionless with the same stiffness as particles.
The values of the other parameters are selected from the literature. It
is worth pointing out that there is not a theoretical critical time step
for a non-spheres system. Hence, the present time step is selected
tentatively based on empirical trials and values in the literature to
make simulations numerically stable.

3.2. Packing procedure

A packing can be formed under different conditions, such as pour-
ing or tapping, sequential addition, and vibration [9,22]. Given that
this work mainly focuses on natural depositing of particles under
a gravitational field, the sequential addition method is applied. In

Fig. 4. Examples of shapes used in the simulations.

Table 1
Particle parameters used in the DEM simulation.

Parameter Value

Particle size, r (mm) 10
Particle aspect ratio, g 0.3 ~ 2.5
Particle blockiness, f 0.5 ~ 1.4
Particle density, q (kg/m3) 2650
Coefficient of friction, l 0.48
Damping coefficient, a 0.3
Particle normal stiffness, Kn (N/m) 1 × 107

Particle shear stiffness, Kt (N/m) 7 × 106

Time step, Dt (s) 5 × 10−6

detail, non-overlapping particles are added layer by layer into a cubic
container with a dimension of 350mm × 350mm × 1000mm. Each
layer consists of 50 particles with random locations and orientations,
and is added to the container from a height of five times the particle
size every 0.05 s. Each packing is made up of 5000 monodisperse par-
ticles. For 60 particle shapes controlled by 12g and 5f , 60 simulations
in total are carried out. For each simulation, it takes around 120 h
on a 3.4 GHz Xeon CPU in average to reach an assumed equilibrium
state, where the average particle velocity is less than 1 × 10−4

m/s. Fig. 5 shows some final packings for an initial observational
comparison.

4. Results and discussion

4.1. Packing density

Packing density (fraction) and coordination number are two of
the commonly used parameters describing the structure of a pack-
ing [58,59]. Packing density is defined as ratio of the solid volume
to the total packing volume including voids. Given that the top
free surface of a packing is not regular, an imaginary cubic box
with the same bottom as the container (hereafter referred to as the
measurement box) is introduced to measure the packing density.
Consequently, the solid is made up of all particles with centroids
inside the measurement box, and the total packing volume is equal
to the box volume. For a more accurate measurement, one hundred
measurement boxes with heights uniformly distributed between
150 mm and 200 mm are generated. The average of one hundred
corresponding packing densities, then, is taken as the final packing
density.

Fig. 6 shows relationship between packing density and aspect
ratio for ellipsoidal particles (f = 1). It can be seen that there is a
peak at an aspect ratio of near 0.6 for oblate ellipsoids (g < 1), and
a peak at an aspect ratio of near 1.5 for prolate ellipsoids (g > 1).
Such an M-type trend in packing density with aspect ratio is in good
agreement with other DEM results in the literature [8,22,60]. Quan-
titatively, the results of Donev et al. [8] and Delaney and Cleary [60]
are larger than those of Zhou et al. [22] and this work, especially near
the two peaks, due to different packing methods applied. Donev et
al. [8] and Delaney and Cleary [60] used the Lubachevsky-Stillinger
algorithm (LS) [12] by which particles expand with a growing rate,
whereas Zhou et al. [22] and this work used the particle depositing
method by which particles free deposit under gravitational forces.
The reader is referred to the literature [22] for a more detailed
comparison between these two methods. In addition, it is worth
mentioning that the parameter values of material properties in these
work are not quantitatively consistent with one another, thereby
causing some discrepancies in the results to some extent.

For superellipsoids with aspect ratio g = 1 (i.e., so-called
superballs), variation in packing density with blockiness f is shown
in Fig. 7. It is observed that spherical particles (f = 1) have the
lowest packing density of around 0.62, which is lightly below the RCP
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Fig. 5. Packings of superellipsoids with different blockiness f and aspect ratio g.

density limit of 0 ≃ 0.64 in frictionless systems. Changing blockiness
f away from 1.0, packing density increases. This feature was reported
by Jiao et al. [61] and Delaney and Cleary [60] as well, whose results
are replotted together in Fig. 7 to make a comparison. It is worth
pointing out that Jiao et al. [61] shows the upper-bound packing
density where particles place in the lattice packing.

Fig. 6. Relationship between packing density and aspect ratio for ellipsoids.

Results of the two special cases (i.e., ellipsoids and superballs)
are qualitatively consistent with the literature, even though packing
methods and model parameters adopted are somewhat different,
indicating that the present DEM model is reasonable. Some further
simulations are undertaken with a wide range of particle shapes for
superellipsoids varying blockiness f and aspect ratio g.

Fig. 7. Variation in packing density with blockiness f for superballs.
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Fig. 8 shows relationships between packing density and aspect
ratio g with different blockiness f . For a given blockiness f ,
relationship between packing density 0 and aspect ratio g shows
two types of trends: one is M-type with two peaks at g ≃ 0.6 and
g ≃ 1.5, and the other is inverted V-type with one peak at g = 1.0.
For blockiness f decreasing from 1.0, the 0–g curve moves up seeing
a M-type transferring to an inverted V-type trend. A similar trend
was observed in Delaney and Cleary [60]. Moreover, for blockiness
f increasing from 1.0, the 0–g curve behaves in a similar fashion.
Overall, ellipsoids have the lowest packing density in the family of
superellipsoids.

4.2. Coordination number

Coordination number(CN), defined as the number of particles
in contact with a considered particle, is an important quantity for
the quantification of internal structural features (i.e., fabric) of a
granular packing. As a meso-scale parameter, coordination number
pronounces louder in macroscopic properties than packing density
of a granular packing. For example, Agnolin and Roux [62] showed
that the bulk moduli are primarily sensitive to coordination number
instead of packing density, as is conventionally believed. In the
present study, it is assumed that two particles touch one another if
there is an overlap between them, i.e. that the normal contact force
is non-zero in terms of the given contact model.

Fig. 9 shows the dependence of the mean coordination number Z
with aspect ratio g for ellipsoids. It can be seen that as the aspect ratio
g increases or decreases form 1.0, the mean coordination number
increases to reach a peak then slowly decreases. This trend quali-
tatively agrees with that in the literature [8,22,60]. Compared with
the variation of packing density in Fig. 6, it is found out that a high
mean coordination number is not corresponding to a high packing
density due to the effect of aspect ratio [22,28]. Such a phenomenon
occurs with varying blockiness. Take cubic-like shapes with f = 0.5
as an example, the particle shape at g = 1.0 sees the highest pack-
ing density but the lowest coordination number. The main reason is
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Fig. 8. Relationships between packing density and aspect ratio g for superellipsoids
with different blockiness f .

Fig. 9. Variation in mean coordination number Z with aspect ratio g for ellipsoids.

that particles with g = 1.0 are more likely to form face-face contacts,
referring to Fig. 5 (a)–(c) for an observational comparison. Further-
more, with varying blockiness f , the Z–g curve behaves in a similar
fashion, referring Fig. 10, which is consistent with the literature [60].
In addition, the effects of blockiness f on both packing density and
mean coordination number are significant at aspect ratios near 1.0.

It is worth noting that a clear correlation between packing density
and mean coordination number was observed in sphere packings. For
non-sphere packings, it can be also seen that packing density is pos-
itively related to mean coordination number by varying the external
conditions from the same initial packing structure (i.e., initial fabric),
e.g., varying the loading on the packing [63], or by changing mate-
rial properties, e.g., varying inter-particle coefficient of friction [22].
However, changing the particle shape is likely to significantly affect
the initial structure, thereby resulting in an unclear relationship

Fig. 10. Variation in mean coordination number Z with aspect ratio g for superellip-
soids.



S. Zhao et al. / Powder Technology 310 (2017) 175–186 181

between packing density and mean coordination number for differ-
ent particle shapes. That is the case in the present study.

A probability distribution of coordination number is one measure
of anisotropy of scalar-based fabric within a granular packing. More
analysis of anisotropy is conducted in the following sections. Fig. 11
shows probability distributions of coordination number for superel-
lipsoids with different blockiness f and aspect ratio g. The curves are
well described by Gaussian distributions, although there seems to be
some systematic skewness at the tails. The distribution moves to the
right as aspect ratio decreases or increases from 1.0 for a given block-
iness, corresponding to an increasing mean coordination number in
Figs. 9 and 10, and implying that anisotropy increases. However, the
distribution is likely to move to the left when the shape becomes
sufficiently oblate or prolate. Interestingly, the peak of distribution
varies at a range of aspect ratios between 6.1 and 9.0. Moreover, as
blockiness f increases or decreases from 1.0, the range appears to
be narrower, e.g., [7.6, 8.5] at f = 0.5, suggesting that anisotropy
decreases. With respect to superballs (g = 1.0), the distribution
moves to the right with f increasing or decreasing from 1.0.

4.3. Distribution of particle orientations

Previous investigations show that bulk properties of a granular
material are significantly related to the distribution of particle ori-
entations. For example, the stress-strain relationship and shear
strength have been found to depend on the direction of loading with
respect to the direction of particle orientation [30,31,33,34]. Effects
of particle shape on the distribution of particle orientations within
a granular packing are quantitatively investigated in this section. It
is assumed that the orientation of a particle is along its long axis.
Given that the interpretation of a three-dimensional distribution of
particle orientations is difficult, we project particle orientations on
the horizontal and vertical planes for ease of visualization, referring
to Fig. 12. Note that no data for particle orientations of superballs
(g = 1) are presented due to unavailable definitions for a superball
orientation in terms of the present definition.

As shown in Fig. 12, the distribution of particle orientations on
the horizontal plane is much more uniform than that on the vertical
plane. Moreover, major particles have orientations along near the

Fig. 11. Effects of aspect ratio g ((a)–(e)) and blockiness f (f) on probability distribution of coordination numbers for superellipsoids. The curves are fits to Gaussian distributions.
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Fig. 12. Probability distributions of particle orientations projected on the horizontal (the left column) and vertical (the middle and right columns) planes for different blockiness
f and aspect ratio g.

horizontal plane. That is because a particle is more likely to align
along the long axis to reach a stable state during depositing. For the
effect of aspect ratio g on the particle orientation, it is significant on
the vertical plane, but not on the horizontal plane. As expected, the
distribution tends to form a circle with g → 1. That is to say, it is
more possible for a particle with a longer axis to align near the hor-
izontal plane. However, such a trend disappears when particles are
sufficiently oblate or prolate. For instance, the distribution of particle
orientation is likely to become more uniform with g decreasing from
0.5 or increasing from 2.0 in Fig. 12 (c).

Compared with aspect ratio g, blockiness f has much more
dramatic effects on the distribution of particle orientations. For f =
1.0, a circle-like distribution is observed on the horizontal plane, an
ellipse-like distribution on the vertical plane. As f decreases from 1.0,
the distribution is likely to become more square-like on the horizon-
tal plane, and parallelogram-like on the vertical plane. By contrast,
increasing f from 1.0, the distribution on the horizontal plane tends
to a square but not significantly as the cases of f < 1.0. However, on
the vertical plane, the distribution sees a small change. The reason
why f has such a significant effect on these diagrams is noted here.
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Changing f away from 1.0, the sharper edges of particles come out
and the particle faces become more flat, thereby increasing face-
face contacts forming columnar phases, referring to Fig. 5 for an
observation. Furthermore, considering two extreme cases, cubic par-
ticles (f → 0) and octahedral particles (f → 2), it is easier for cubic
particles to form columnar phases than for octahedral particles. That
is why the distribution change with f < 1.0 is much more significant
than that with f > 1.0.

4.4. Fabric anisotropy

Anisotropy is one of the most important characteristics of
granular materials [30–32]. The non-uniform distributions of particle
orientations in the previous section intuitively reveal granular
anisotropy to some extent. For a further quantitative investigation,
the fabric tensor is introduced to quantify the fabric, given as [64]

V =
1
N

N∑

k=1

nk • nT
k (13)

where nk is the kth unit fabric vector, N the amount of all fabric
vectors. Such a definition yields a 3 by 3 matrix with three eigen-
values (k1 ≥ k2 ≥ k3) and three eigenvectors. The eigenvalues
and eigenvectors determine the magnitude and direction of the
anisotropy, respectively. The deviatoric eigenvalue kd [65] given by
Eq. (14), is used to determine the magnitude of anisotropy, consid-
ering all the three eigenvalues of the fabric tensor. Note that the
larger the deviatoric eigenvalue kd is, the more anisotropic the fabric
vectors.

kd =
1√
2

√
(k1 − k2)2 + (k1 − k3)2 + (k2 − k3)2 (14)

Three types of fabric vectors, i.e., particle orientation, contact nor-
mal and branch vector, are focused on. The particle orientation is
along the major axis as mentioned previously. The contact normal
is the contact direction (more details in Section 2.4). The branch
vector is defined as the vector joining the centroids of two particles
in contact.

It is evident that particle shape has a significant effect on fabric
anisotropy as shown in Fig. 13. In detail, aspect ratio is more pro-
nounced for oblate particles, compared with blockiness. With respect
to anisotropy of particle orientations in Fig. 13 (a), it is more sensitive
to blockiness for f < 1, where f = 0.5 shows the lowest anisotropy
consistent with distributions of particle orientations in Fig. 12. More-
over, as shown in Fig. 13 (b), anisotropy of contact normals shows
a similar relationship as mean coordination number Z with aspect
ratio g, where the aspect ratios at the two peaks are near 0.4 and
2.0, slightly different from that of Z–g curves. Indeed, such a trend
is consistent with the analysis in terms of probability distributions
of coordination number in Section 4.2. This suggests that anisotropy
of normal contacts correlates to mean coordination number more
than packing density, implying that coordination number is able to
reveal more particle-scale details than packing density, as mentioned
in Section 4.2. Interestingly, anisotropy of branch vectors, referring
to Fig. 13 (c), is almost twice less than that of particle orienta-
tions and contact normals, indicating that the distribution of branch
vectors is more uniform than that of particle orientations and con-
tact normals. That is to say, branch vectors are less dependent on
particle shape than particle orientations and contact normals are.
One direct explanation is that branch vectors are not sensitive to
particle rotation. For example, the branch vector keeps constant if
a particle rotates around its centroid without translation. A similar
M-type trend between anisotropy of branch vectors and aspect ratio
is observed. However, a small peak occurs at g ≃ 1.0, showing

Fig. 13. Anisotropy of fabric vectors: (a) particle orientation; (b) contact normal; and
(c) branch vector. Note: no data for particle orientations at g = 1.0 are presented.

that particle shape with g = 1.0 (i.e., superball) is not always
corresponding to a low-anisotropic fabric.

The contribution of blockiness f to fabric anisotropy is related
to aspect ratio g, although these two shape descriptors are defined
individually. No clear relationship between anisotropy and blocki-
ness is observed in Fig. 13. Nevertheless, for g < 0.7, anisotropy
increases as blockiness increases; for g > 1.25, anisotropy decreases
as blockiness decreases or increases from 1.0. For g ≃ 1.0, blockiness
has an insignificant contribution to the anisotropy of both particle
orientations and contact normals.

4.5. PDF of contact forces

Inter-particle contact forces play a vital role in force transmission
within granular materials, forming contact force networks which
have been recognized as the key factor determining the macroscopic
mechanical properties of granular materials [66]. Nevertheless, it is
challenging to characterize the contact network due to its spatial
inhomogeneity [67,68]. Here emphasis is put on an important and
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common quantity, the probability distribution function (PDF) of
contact forces, for quantifying the contact network [50,67,69,70].

As shown in Fig. 14, PDF (F/F̄) has a significant linear relationship
with F/F̄ in log-linear scale, indicating that F/F̄ has an exponential
probability distribution. In detail, contact forces at a range of [0.1, 7]
times the average F̄ have a major proportion of up to 79%, forming
strong contact force chains in the assembly; small forces less than
0.1F̄ exhibit a proportion of 20% or so, contributing to weak con-
tact force chains; less than 1% of contact forces is greater than 7F̄.
A similar feature was reported in the literature (e.g., [50,67,69,71]).
However, a peak or plateau at around F/F̄ = 1 was observed in these
literature where external load was performed on assemblies. It is
not a surprise to have such a difference because the PDF of contact
forces is history dependent [50]. In this work, particles experience
free settling under a gravitational field to reach an equilibrium state
(i.e., jamming transmission). At this state, many contacts show small
contact forces due to insignificant self weight applied. Based on this
state, adding external load will make those weak contact force chains
stronger, thereby reducing the proportion of small contacts forces,
which is the case in the literature.

With respect to the effect of particle shape, it is clear that the PDF
of normalized contact forces keeps an almost constant distribution
regardless of particle shape (i.e., aspect ratio g and blockiness f). That
is to say, contact forces normalized by the average obey a particle-
shape-independent distribution to some degree. However, it can be
seen that particle shape has a more or less effect on the proportion of
larger contact forces, e.g., F/F̄ > 5.0. It is worth pointing out that the
present insignificant effect of particle shape is limited to the special
case of packing under a gravitational field forming a relatively low
stress state. Particle shape may give more contribution to the PDF
(F/F̄) of an assembly with a high stress state. This will be investigated
in our future work.

5. Summary and conclusions

A superellipsoidal DEM model was developed to investigate ran-
dom packing of monodisperse superellipsoidal particles with a broad
range of shapes. Two shape descriptors (i.e., aspect ratio g and
blockiness f) were used to control a particle shape. We examined the

effect of particle shape on fabric of a granular packing, and obtained
some interesting results summarized as follows: (1) The relation-
ship between packing density 0 and aspect ratio g shows a M-type
curve for ellipsoids. Changing blockiness f away from 1.0, the 0–g
curve moves up seeing a M-type transferring to an inverted V-type
trend for superellipsoids. Ellipsoids have the lowest packing density
in the family of superellipsoids. (2) The mean coordination number Z
increases to a peak, then slowly decreases as aspect ratio g increases
or decreases from 1.0 for a given blockiness f . The corresponding
distribution peak of coordination number is at a narrower range
with different aspect ratios as blockiness f varies away from 1.0. (3)
The distribution of particle orientations on the horizontal plane is
much more uniform than that on the vertical plane. Moreover, major
particles have orientations near the horizontal. Furthermore, the dis-
tribution is much more sensitive to blockiness than aspect ratio. (4)
Anisotropy of both particle orientations and contact normals shows a
similar M-type relationship with aspect ratio, two times larger than
that of branch vectors. No clear relationship between anisotropy and
blockiness is observed. (5) Contact forces normalized by the aver-
age obey such a clear exponential distribution that is particle-shape
independent to some degree.
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Appendix A. Geometric quantities of a superellipsoid

Volume of a superellipsoid is given by

V = 2AB
(

1
2
41 + 1, 41

)
B

(
1
2
42,

1
2
42

)
(A.1)

Fig. 14. Probability distribution functions (PDFs) of contact force F normalized by the average F̄.
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where A is short for 1
2 abc4142; the term B(x, y) is a beta function

related to gamma function and defined as

B(x, y) = 2
∫ p

0
sin2x−10cos2y−10d0 =

C(x)C( y)
C(x + y)

(A.2)

The principal moments of inertia of a superellipsoid are deter-
mined by

⎧
⎪⎪⎨

⎪⎪⎩

I1 = Ixx = 1
2qA(b2b1 + 4c2b2)

I2 = Iyy = 1
2qA(a2b1 + 4c2b2)

I3 = Izz = 1
2qA(a2 + b2)b1

(A.3)

in which q is material density, and b1 and b2 are given as

⎧
⎨

⎩
b1 = B

(
3
2 42, 1

2 42

)
B

(
1
2 41, 241 + 1

)

b2 = B
(

1
2 42, 1

2 42 + 1
)

B
(

3
2 41, 41 + 1

) (A.4)

Given a normal vector (nx, ny, nz) on the surface, the correspond-
ing local spherical coordinate (h,0) is obtained through the following
function f:

⎧
⎪⎪⎨

⎪⎪⎩

h = atan2
(

Sign(ny)|bny|
1

2−41 , Sign(nx)|anx|
1

2−41

)

0 = atan2
(

Sign(nz)|cnz| cos(h)|2−42 |
1

2−42 , |anx|
1

2−42

) (A.5)

where the term atan2(x, y) is the arctangent function of x
y producing

results in the range (−p,p]; the term Sign(x) is the signum function
defined as

Sign(x) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if x < 0,
0 if x = 0,
1 if x > 0.

(A.6)

Given the local spherical coordinate (h,0) of a point on the
surface, the corresponding local Cartesian coordinate (x, y, z) is
expressed via the following function F:

⎧
⎪⎪⎨

⎪⎪⎩

x = Sign(cos(h))a| cos(h)|41 | cos(0)|42

y = Sign(sin(h))b| sin(h)|41 | cos(0)|42

z = Sign(sin(0))c| sin(0)|42

(A.7)
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